Data assimilation with the Ensemble Kalman Filter in a high-resolution spectral wave model - demonstrated on a case in the Southern North Sea

2nd International Workshop on Waves, Storm Surges and Coastal Hazards, Melbourne, Australia November 2019

Jesper Sandvig Mariegaard Natacha Fery DHI Denmark

Motivation

- Accurate prediction of wave conditions
 - Design of offshore and coastal structures (hindcast)
 - Operations at sea (forecast)
- MIKE21SW + EnKF = better wave predictions?

Research questions

- Can we reduce model complexity and calibration work... and rely on data and EnKF instead?
- Is EnKF necessary? or is a simpler data assimilation procedure sufficient?

Spectral wave modelling with MIKE 21 SW

MIKE 21 SW

- 3rd generation spectral wind-wave model
- Unstructured mesh
- Finite volume
- Wave growth, decay and transformation

$$\frac{\partial N}{\partial t} + \nabla \cdot (\vec{v}N) = \frac{S}{\sigma}$$

DA in MIKE FM

Modules

Data assimilation and the EnKF

#8

How to update the model?

Distance-based

But how about...

- Other variables
- Physical consistency

How to update the model?

Distance-based

Correlation-based

Combining two uncertain pieces of information

Filtering

Kalman filter

Optimal combination of

- model (with errors) and
- observations (with errrors)

It only works for small, linear problems

The Ensemble Kalman filter

Ensemble models

- Ensemble consisting of m *members*
- Representing model uncertainty

How to update the model?

- Use ensemble
- Model error \approx difference from mean

Correlation-based update

Ensemble Kalman filter

- Idea: Monte Carlo approximation to Kalman filter
- Approximate model uncertainty by samples (ensemble members)

Ensemble modelling in MIKE FM

DA in MIKE FM

Modules

Ensemble models

• Ensemble consisting of m *members*

How to introduce variability in model?

- Add small "errors" (=pertubations) to...
 - Initial conditions
 - Forcings
 - Parameters

Uncertainty modelling in MIKE FM

- Amplitude (e.g. wind st.dev 1m/s)
- Time scales, AR(1) -

Uncertainty on wind u-velocity in a point 2.5 1.5 n [m/s] 0.5 Ω -1.5 0 10 20 30 50 60 70 40 hours

- Spatial scales
 - Discretization (coarse)
 - Covariance Q (e.g. 300 km)
- Vector ϵ

State representation in MIKE FM

- Model variables according to selected modules
 - State variables $x_{model} = (wl, u, v, ...)$
- Model errors
 - Types: open bc, wind-u, wind-v, ...
 - Discretized on a grid: ϵ
- Augmented state

$$x_{state} = \begin{bmatrix} x_{model} \\ \epsilon \end{bmatrix}$$

Data assimilation for MIKE 21 SW

State representation

- Action density!
- And... variables that we would like to assimilate
 - Hm0, Tp
- Model errors

Creating the MIKE 21 SW ensemble

- Forcings
 - Wind velocity components
 - Windspeed
- Parameters
 - Whitecapping
 - Bottom friction
- Boundary conditions (later)

Case Study: Dutch Coast Metocean Desk Study

 DHI Project to provide meteorological and oceanographic (metocean) design conditions for the Dutch Coast wind Farm zone

• Based on numerical modelling over 39 years

Case Study: MIKE 21 SW settings

- Coarse-resolution edition of existing SW model setup
- CFSR wind
- Study period 2017

Case Study: DA model

- Ensemble size: 10
- Perturbation of wind forcing:
 - 1.5m/s additive error on 80km grid
- Assimilate significant wave height
- Assimilate every 10 minutes

Station F16 – no DA

Station F16 – DA with 3 stations

How about altimetry data?

Forcings and model too good!?

• ...or altimetry data (Sentinel 3A) too sparse

- Reduce accuracy in forcings
 - Let wind be biased 20% low
 - Simplify boundary conditions

•F3

Station F16 – no DA, bad input

DHI

Station F16 – DA with 3 stations, bad input

What about estimation of wind?

F16

© DHI

F16 wind speed – 80% CFSR (bad input)

F16 wind speed – DA Sentinel 3A, bad input

F16 wind speed – DA with 3 stations, bad input

Concluding remarks

Conclusion

- EnKF succesfully implemented for MIKE 21 SW
- Demonstrated on real metocean case
 - Station DA improved Hm0 RMSE 30%
 - Altimetry DA didn't help in this case
- Demonstrated on case with reduced-quality input (wind biased low)
 - Altimetry DA improved Hm0 RMSE 20%
 - Station DA improved Hm0 RMSE 57%
 - Wind speeds improved by DA
- It could be feasible to EnKF in stead of high-resolution model with good forcings
 - Computation time (1yr simultion): 2hr on 20 cores (10 members)
 - Original high-resolution model: 25hr on 72 cores

Next steps

Case study

- Parameter errors
- Testing of EnOI (static ensemble)
- Assess forecasting skill
- Assimilation of wind

Development

- Boundary forcing errors
- Ensemble Kalman Smoother (EnKS)

Questions?

Jesper Sandvig Mariegaard, DHI

Error covariance

Error covariance

• Covariance of Hm0 with Hm0 in K14 during NW storm

